The Energy Cascade in Strong Wave Turbulence

Wave turbulence concerns the statistical descrip-this formulation, all details of the physics is con-
tion of ensembles of interacting dispersive wavéained in the form of the dispersion relatian, and
maintained far from equilibrium by coupling thehe interaction coefficiently, k,. In general, these
wave field to external sources and sinks of energye very complicated functions. Nevertheless, in
The archetypal example is gravity-capillary wavesany applications they are homogeneous functions
on the surface of water driven by the wind andf their arguments reflecting an underlying scale in-
damped by viscosity. Other applications include opariance of the original physical system. We denote
tical waves of diffraction in nonlinear media, spitoy a andy the degrees of homogeneity af and
waves in magnetic materials and Alfven waves ifi.x, k, respectively. Together with the physical di-
magnetized plasmas to mention a few. Aside fromension of the wave field], the exponentst andy
nonlinear interactions between waves, the other égtermine many of the scaling properties of the wave
sential ingredient to generate wave turbulence iguabulence described by Eg. (2).

Wide separation in scale b_etween the sources an(ﬂ1 the inertial rangefy andvy are negligible and
Smk?‘ of energy. Ju_St as in the case of.hydrod%-e dynamics are entirely controlled by the Hamil-
namic turbulence, this leads to the formation of 3Bnian part. In the case of weak interactions be-
inertial range of scales through which energy is CORYeen waves, so called weak wave turbulence, an
servatively transferred by the nonlinear interaCtio%%sentially complete theory was developed by Has-
from the source scale to the sink. Thi? processsiélmann, Newell, Zakharov and others in the '60s
known as an energy ca_scade. By carrying a flux éi)l];d '70s. In weak wave turbulence, the principle
energy through the inertial ra_n_ge_, a casc_ade allowécﬁ'ntribution toH is the quadratic energy. Non-
wave field to reach a non-equilibrium stationary St8fRear interactions localise on a set of resonant man-

where forcing balances dissipation on average. In ds and a consistent kinetic theory can be de-

ality, other quantities may also produce cascades QUf;neq which describes the redistribution oty
here we only consider energy cascades.

‘wave resonances. Higher order moments of the wave

o V_\:e 9°ns'd§raffysgmsa\’\éhfrebtT:nIee?d'nganﬁg'ﬂéld are expressed in terms of the second moment,
arity is quadratic (3-wave turbulence). pillary=- . L .
waves and Alfven waves are in this class. Conser aflak2> = MOk — ko). Th(_a Kinetic equation can

: exactly solved for the stationary state using a tech-

tive dynamics admit a natural Hamiltonian descripﬁque now known as the Zakharov Transformation
tion in terms of Fourier complex canonical variable%he spectrumpy = /e k-¥-0 is an exact stationary '

{a ad, solution of the kinetic equation which carries a con-
B B _ stant flux,&, of quadratic energy, from large scales
H=T+U= /dk m,(akak+/dk uk). () to small. The constant is calculable. This spec-
trum is the analogue of the Kolmogorov spectrum of
fluid turbulence. Much work on wave turbulence has
focused on its verification.

w is the linear frequency and(k) is the nonlinear
(interacting) part of the energy density. Wheg: 0,
Eq. (1) describes free waves with dispersion tayy
k being the wave vector. We now supplement Hamil- Despite an extensive theoretical framework for
ton’s equations with forcing and dissipation givingnderstanding weak interactions, relatively little is

the equations of motion known about the case where interactions between
U waves are strong. The lack of a consistent closure for
Orax = iuxak + iﬁ + fr — viak. (2) higher moments of the theory provides a formidable

obstacle. Nevertheless, we argue that the flux carry-
For 3-wave turbulence, the nonlinear energy densityy correlation function may be determined exactly,
takes the general form: even in the case where wave interactions are strong.
This is by analogy with the derivation of th¢®law
u :/dkldk25(k—kl—kZ)Tk;kl,kz [axak, 8, +C.¢].  in hydrodynamic turbulence and does not require any
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Figure 1. Flux-correlation function of the model syg-igure 2: Conversion of linear to nonlinear energy
tem, Eq. (4), in the stationary state for several valugiwes a constant energy flux in the model, Eq. (4)
of y compared with predicted scaling.

wherek, = 2". Locality is enforced since the Hamil-

closure assumptions. One difficulty in treating tH@nian only contains the interactiokg-+ kn — kn1.
strongly interacting case is that, in deriving the flukn€ statement that this model system has a constant

equation, one must take into account that it is the o of total energy can be expressed as

tal energy,H, which is conserved by the nonlinear Q(H)
interactions. With this in mind, one can show that Re(an1 an than) = —% k-, (5)

the following continuity equation holds in the iner- ) ) ] o
tial range in the stationary state: again involving correlations of fields and derivatives.

HereQéH) is the flux. A numerical validation of this

2 41 relation is shown in Fig. 1 for a sequence of values
/_rl(dkiki )[Tk:kl«,kznozl,Z_Tklik,kznlioﬁ] =0, of the parametey. An illustration of how the cas-
= (3) cade works is shown in Fig. 2. Neither the flux of

wherelMo.12 = [ [120dQi (Re(ax 81, a,)) is the linear energy,T, nor _nonl_inear energy,J, are con-
flux correlation function. Since it involves correlaStant, but by converting into U, a constant flux of
tions of fields and time derivatives of fields, it is &tal energy.T +U can be obtained. We are now at-
new type of object which has not arisen previousimpting to find if such a mechanism can produce a
in systems with quadratic invariants. If we assun@Scade of total energy in a more realistic model of
that energy transfer is local in scale and that,, Wave turbulence where locality of interaction is not
is a homogeneous function of degrégpne can use assured a-priori. If so, this work will provide the first
the Zakharov Transformation to show that the expgoncrete, generally applicable theoretical handle on
nenth = —y— 3d exactly solves Eq. (3). This scalingstrong wave turbulence.

for Mo.12 describes a constant flux of total energy,

T +U, in the inertial range. This scaling should holfRefer ences

for both weak and strong wave turbulence.

Even if local transfer is assured, which is diffif1] C. Connaughton, R. Rajesh, and O. Zaboron-
cult to verify in general, it is strange that an object ski. Constant Flux Relation for driven dissipa-
like (Re(azay a;,)) should scale since it can be ex- tive systemsPhys. Rev. Lett., 98:080601, 2007,
pressed as a sum of correlation functions of different cond-mat/0607656.
orders. To demonstrate proof of concept, we studied

the model Hamiltonian: Contact Information: Colm Conna_ughton —CNLS
& T13, MS-B213, Los Alamos National Laboratory,
n=N — oy =0 — Los Alamos, NM 87545, Phone: (505) 667-7075, E-
H= n_Z_anananJr Kn_1 (anan_1+anan—1) (4) mail: connaughtonc@gmail.com.
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